- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gomez-Diaz, J. Sebastian (2)
-
Paul, Nayan K. (2)
-
Correas-Serrano, Diego (1)
-
Domulevicz, Lucas (1)
-
Gomez‐Diaz, Juan Sebastian (1)
-
Hihath, Joshua (1)
-
Jeong, Hyunhak (1)
-
Paul, Nayan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Correas-Serrano, Diego; Paul, Nayan; Gomez-Diaz, J. Sebastian (, Micro- and Nanotechnology Sensors, Systems, and Applications XI, edited by Thomas George, M. Saif Islam, Proc. of SPIE)We explore the possibilities enabled by the spatiotemporal modulation of graphene’s conductivity to realize magnetic-free isolators at terahertz and infrared frequencies. To this purpose, graphene is loaded with periodically distributed gates that are time-modulated. First, we investigate plasmonic isolators based on various mechanisms such as symmetric bandgaps and interband photonic transitions and we demonstrate isolation levels over 30 dB using realistic biasing schemes. To lessen the dependence on high-quality graphene able to support surface plasmons with low damping, we then introduce a hybrid photonic platform based on spatiotemporally modulated graphene coupled to high-Q modes propagating on dielectric waveguides. We exploit transversal Fabry-Perot resonances appearing due to the finite-width of the waveguide to significantly boost graphene/waveguide interactions and to achieve isolation levels over 50 dB in compact structures modulated with low biasing voltages. The resulting platform is CMOS-compatible, exhibits an overall loss below 4 dB, and is robust against graphene imperfections. We also put forward a theoretical framework based on coupled-mode theory and on solving the eigenstates of the modulated structure that is in excellent agreement with full-wave numerical simulations, sheds light in the underlying physics that govern the proposed isolators, and speeds-up their analysis and design. We envision that the proposed technology will open new and efficient routes to realize integrated and silicon compatible isolators, with wide range of applications in communications and photonic networks.more » « less
-
Domulevicz, Lucas; Jeong, Hyunhak; Paul, Nayan K.; Gomez‐Diaz, Juan Sebastian; Hihath, Joshua (, Angewandte Chemie International Edition)Abstract Nanoscale manipulation and characterization of individual molecules is necessary to understand the intricacies of molecular structure, which governs phenomena such as reaction mechanisms, catalysis, local effective temperatures, surface interactions, and charge transport. Here we utilize Raman enhancement between two nanostructured electrodes in combination with direct charge transport measurements to allow for simultaneous characterization of the electrical, optical, and mechanical properties of a single molecule. This multi‐dimensional information yields repeatable, self‐consistent, verification of single‐molecule resolution, and allows for detailed analysis of structural and configurational changes of the molecule in situ. These experimental results are supported by a machine‐learning based statistical analysis of the spectral information and calculations to provide insight into the correlation between structural changes in a single‐molecule and its charge‐transport properties.more » « less
An official website of the United States government
